| . 57~é/
| . Jtvo3/
N8O -16286 ,/~

Programming Support Environment Issues in the

Byron Programming Environment

Matthew J. Larsen
Intermetrics, Inc.
733 Concord Avenue
Cambridge, MA 02138

abstract: This paper discusses issues which programming support environments
need to address in order to successfully support software engineering. These
concerns are divided into two categories. The first category, issues of how
software development is supported by an environment, includes support of the
full life cycle, methodology flexibility and support of software reusability. The
second category contains issues of how environments should operate, such as
tool reusability and integration, user friendliness, networking and use of a
central data base. This discussion is followed by an examination of Byron, an
Ada based programming support environment developed at Intermetrics.
focusing on the solutions Byron offers to these problems, including the support
provided for software reusability and the test and maintenance phases of the
life cycle. The use of Byron in prouject development is described briefly, and
the paper concludes with some suggestions for future Byron tools and user
written tools.

1. Introduction

Over the past two decades, producers and consumers alike of software products
have become increasingly concerned with what has become known as the
"software crisis”. As computer hardware has evolved to enable the processing
of more and more data at faster rates, the range of pra:tically solvable problems
has grown. Yet our ability to manage the growing capabilitics of computer
hardware, as Djikstra [1] has stated, has lagged. In order to combat the
software crisis such weapons as design methodologies and software support
tools have come into existence. Collections of these tools have become known
as programining support environments, and there has been a gradual realization
that such environments can be valuable. lvie |2) identifies several benelits of
such systems, including commonality of documentation, development of
standards and enhanced programmer mobility and retrainability.

*  Byron is a trademark of Intermetrics, Inc.

B.2.1.1 ORGINAL PAZE IS
OF POOR QUALITY



PR N1

There is much disagreement concerning exactly which tasks a programming
environment should support. The DoD has issued Stoneman (3}, a document
specifying the requirements an Ada* programming environment must meet, but
Stoneman focuses primarily on how the tools are to work in general, not on the
needs to be fulfilled by the tools. In this paper we shall first examine issues
which programming environments, particularly Ada environments, must
address. This will be followed by an examination of Byron, an Ada based
programming environment developed at Intermetrics, and how Byron deals
with these issues. We shall then examine how Byron might be applied to a
project.

2. Programming Support Environment Issues

There are two sets of issues relating to programming environments. The first
set focuses on how the environment supports software engineering. Included
here are full life cycle support, support of software reusability and methodology
flexibility. The second set is concerned with how the environment operates
internally, including issues of environment integration, flexibility and user
friendliness.

2.1 Software Engineering Issues

The purpose of a programming environment is to support software engineering.
There are four concerns which must be addressed in order to do this
effectively. First, the full software life cycle must be supported. Second, the
user must be able to move freely from one life cycle phase to another. Third,
the environment must not restrict the choice of methodologies available to the
user, and finally, the environment must actively support the reuse of software.

2.1.1 Full Life Cycle Support

Frequently, the software life cycle is modeled as a discrete, linear process [4].
Initially requirements are drawn up, then a software system is specified,
designed, implemented, tested and finally maintained. Each phase is treated
separately, and is completed before the next phase begins. If revisions must be
made, the process loops. For example, implementation might halt while the
design is reworked, and then the implementation would be modified. The
result of each phase is a document describing the results of that phase (in
implementation this is the actual code). Note that these documents are often
of vital importance to the following phases. ['or example, it is impossible to
test a software system without knowing what it is required to do. Similarly, a
design document may give a valuable overview of a system to the maintenence
Warm.

*  Adais a trademark of the Departinent of Defense

ORIGINAL PACE IS B.2.1.2
OF POOR QUALITY

-2 .



In the past, automated support existed only for the implementation phase.
Even now, research on programming environments is mostly directed toward
the code-compile-debug cycle |5]. However, errors are cheaper and easier to
fix if they are discovered earlier in the lifecycle. Also, if the computer is only
usable for implementation, programmers will tend to concentrate on that phase.
So the need for good tools which assist with earlier life cycle phases is
paramount. As Gutz et al. [8] report, an environment must provide support
throughout the life cycle.

2.1.2 Mobility Between Life Cycle Phases

Although the view of the life cycle as a discreet process is useful, it is not
wholly adequate. Often an error is discovered which requires adjustments in an
earlier phase. Because of deadline pressures, the corrections are usually made
only in the current phase, which then bears some relation to the previous
phases, but is not a direct descendant. Thus, the resulting implementation is
based on an underlying design which evolved separately from the design
document. The differences are likely to be subtle and difficult to understand,
but are almost certainly important. If, however, there is a simple way to update
the results of a previous phase (in this case the design document), the results
of the phases are more likely to remain consistent with each other.

The essential problem, therefore, is to keep the documentation for the earlier
phases consistent with the current phase. Naturally the previous phases are
reflected in the current phase, although the information may be implicit rather
than explicit. For instance, in Ada code some portions of the design are readily
visible in the specifications of packages and the decisions concerning the
grouping of subprograms into packages. Since the packages also contain
information unimportant to the design, what is needed is a tool to distill the
design out of the code. But in order to do this, the entire design must be
explicitly stated, as must any other information we might want to use in
creating reports. One way of providing easy mobility between life cycle phases
is to introduce a programming language which permits explicit statement of
information concerning all phases.

2,1.8 Methodology Flexibilily

There are many different software engineering methodologies, and new ones
appear with frequency. Even such basic concepts as the life eycle are called into
question (7| and revised regularly. It has become clear |8] that environments
must be flexible enough to permit a variety of methodologies and the evolution
of new methodologies, since different problems require different methods of
solution. In order to provide this flexibility, environments must permit the
expression of many different kinds of information and also the categorization of
this information in many different ways. The environment must then provide
access W this information, as we will sce below. The importance of this
flexibility cannot be overstated.

ORICINAL PATE '8

OF POCR QUALITY

B.2.1.3



2.1.4 Software Reusability

The software industry has recognized the need to avoid continuously rewriting
various pieces of software. One of the major goals of Ada is the proliferation
of large libraries of reusable packages, in order to address this need. However,
there is a very real danger, even in small environments, that one programmer
might not know what other programmers have already done. Even if code is
known to exist, it may be difficult to determine whether the package actually
does what is necessary (and whether it has side effects), or whether it can be
easily modified. If the only way to identify the functionality and effects of a
package is to read the code, much of the advantage of reusing the code may be
lost.

The suitability of a given package for a given task is best evaluated by
examining the design of the package, if that information is accurate. Therefore
we see that the design information should be explicitly stated, and extractable
from the code. Furthermore, this information must be in a concise and
standard format, so users will be able to quickly sift through the available
packages to find what they need. It is important for the environment to
support the act of finding software which could be reused.

2.2 Environment Operation Issues

Although the support of software engineering is the primary goal of
programming environments, issues concerning the operation of the
environment are also important. If the tools are too clumsy to use, the
environment will not be useful. Osterweil [9] identifies five characteristics
essential to programining environments: breadth of scope and applicability, user
friendliness, reusability of components, integration, and use of a central data
base. The first of these includes the issues we identified above as methodology
flexibility and life cycle coverage. The rest we shall consider below.

User friendliness is a broad term, including many fairly obvious points. User
interfaces should be consistent; help should be on-line and easily accessible;
tools should perform obvious functions and be free from contradictory and
confusing options. A less obvious aspect of this issue is that tools should not
overlap in function, which will tend to confuse the users in choosing which tool
is best suited to a specific task. Also, a user who needs to perform a specific
task should be able to find the tool which does that task without intinately
knowing all the tools.

In order to provide a flexible methodology as discussed above, the component
toolset must itselfl be flexible. This toolset can then be the basis for new tools
tailored to fit the project. Bergland and Gordon [10] comment that ”if the tools
come first, too often the design and development methods end up
accommodating the ols inslead of vice versa” This implies, among other
things, that a facility for combining tools must exist. The power of this
approach is  well known from experiences with the Unix* programming

B.2.1.4

[N




RIS SR R

environment. It is, however, not well understood which tools should comprise
the toolset. Presumably, the next few years of research will begin to identify
the essential tools.

It is also important that the tools be well integrated, that is, they should work
together to provide an abstraction which assists the user in working within a
particular development methodology, and shields the user from the delails of
the environment. Thus the interaction of the tools should be controlled in
order to avoid hidden side effects, yet reuse operations where possible. Since
we have already acknowledged the fact that the user is expected to augment the
environment with additional tools, this goal can only be partially achieved.
However, the set of reusable elementary tools should certainly abide by these
rules.

The idea of a central data bese wnich contains all the information relevant to a
project is one of the most widely accepted concepts concerning prograinming
environments {11]. We identified a need earlier for a language which can be
used to express all e inforination concerning a project. It is even more
important that all this informeation be stored in one place. This can then be
used to maintain voricus versions of a project, structure and retrieve
information in managcable pieces aud most importantly, maintain a single set
of documents which describe the state of the project at any given moment.

3. The Byron Programming Support Environment

We will now review the Byron Programming Support Environment, and
examine how it addresses the issues identified in the previous section. The
three important aspects of the environment are how the data enters the
environment, how it is stored, and what tools are available to access the stored
information. The primary means of expressing information to be enterced into
the Byron environmeut is the Byron program development language (PDL).
The PDL text is analyzed and stored in a structured data base (the program
library). Once stored, the information is available to the various tools which
comprise the Byron prograinming support environment.

3.1 The Byron PDL

The Byron programming support environment is centered around an Ada-based
program development language (Byron/Ada PDL). Byron is compatible to Ada
since any legal Ada program is also legal Byron, and vice versa. Byron provides
a consistent way of enlering information into the environment throughout the
software life cycle, and thus smooths the transition from one phase to another.

*  Unix is a trademark of Bell [Laboratories

DRIGINAL PACE IS B.2.1.5
OF POOR QUALITY



Byron constructs are included with the Ada code in the form of annotated

comments. (see [12] and [13] for more detail). The Byron PDL is designed to
augment Ada's design language abilities by formally and efficiently expressing
information produced in the course of engineering a large software system
which cannot be expressed in Ada. Ada has many features which assist and
improve design; however, it has been recognized that there is information
which is not required by or even expressible in modern programming
languages, including Ada, but which is nevertheless important and valuable
(14], [15], [16]. This information is mostly semantic in nature, concerning the
use or purpose of data items or subprograms. Consider the following Ada
subprogram specification

function CopyLinkedList (List : in ListPtr) returns ListPtr;

This is sufficient for compilation; however, in order to use the function there
are details one needs to know, such as whether a physical copy of each list
element is made, or merely a copy of the pointer to the list. Byron permits the
methodical inclusion and retrieval of such information.

Information is expressed in Byron either as Ada code or as Byron annotations.
Annotations are formed with the prefix "--|' followed by text. In general, the
text of an annotation is associated with the Ada construct that precedes the
annotation. An annotation may also contain a keyword which categorizes the
information. This permits the user to tailor the Byron PDL to suit many
different tasks. For example, the effect of the CopyLinkedList subprogram
might be described with the effects keyword, e.g.

--|Effects: Creates an exact copy of the list passed in. A copy
--]of each element is made, so the copied list shares no elements
--| with the original.

The user may specify what keywords may be used and what Ada context they
are to be expected in. This permits the user to define a specific development
methodology, giving the user the methodology flexibility discussed above. For
instance, a methodology might require that every use clause that is placed in
code be followed by a Byron annotation justifying the presence of the use
clause. A Byron keyword "Use _Justification” could be used to enforce this
requirement.

One problemn with methodologies is that it is sometimes difficult to get
programmers to adhcre to them. Byron attempts to alleviate this problem
through the mechanismm of "phase checking.” The wuser specifies what
development phase a given keyword should be used at (keywords may also be
optional). Program source is then calegorized within the program library
according to what phase has been reached based on what keyword annotations
are present. The analyzer will warn a user who indicates that code has reached
a phase which it has not; Wols may also be written to report what phase any
portion of code is currently in. Thus, the "Use Justification” keyword described
above could be required at implementation phase. Warning messages would

B.2.1.6



VU RS NG v Ty AP (L SCAD PNV i s iy e s s

indicate the absence of Use_Justification annotations when code was analyzed
with a phase of implementation.

3.2 The Byron Data Base

The Byron system provides a database called the Ada program library, which
provides a central repository for all the information concerning a project. This
information is primarily stored in the intermediate form known as DIANA,
including both the regular Ada syntactic and semantic information, and the
Byron PDL information. Tools may be written which access either kind of
information, and may be independent of life cycle phase or not. The PDL code¢
enters the program library through the Byron analyzer. This program is the
front end of an Ada compiler, and provides full syntactic and semantic
checking, as well as the checking specified for Byron annotations.

The program library permits Ada programs to be broken down into any number
of separate catalogs containing compilation units, which are linked together to
form the program library which comprises a program. Catalogs may be cither
read-only resource catalogs, which contain a specific release of a set of
compilation units, or modifiable primary catalogs which generaly represent a
new revision under construction. Configuration management is assisted by the
use of different revisions of a resource catalog. Thus, two projects might be
using different revisions of the same resource catalog, so that the project using
the older revision could avoid recompilations or regressions in the newer
revision.

3.3 The Byron Tools

Tools are an essential part of a programming support environment but it is the
selection of tools and the relationship between them that characterizes the
working details of a truly integrated system. As we saw in section two. there
are many factors to be considered when examining a programming
environmenl. The Byron tools have been designed with an eye toward
flexibility and smooth dissemination of the information concerning systems
under development.

As we noted before, a programming support environment must include tools to
support cach phase of the software life cycle, and must smooth the transition
between phases. The Byron tools fall into two broad categories: first, tools
which assist with methodology and the life cycle phases, and second, tols
which assist with programming tasks without regard to a specific discipline or
life cycle phase. Methodology and life cycle tools include an Ada based
PDL, described ecarlier, configuration manager for source and documentation,
design requirements traceability package, data dictionary system and more.
Of the second type of tool, Byron provides a variety of technical programming
wols for static analysis. These include an Ada compiler, linker, recompilation
manager, global cross-referencer, source formater, program lister and others.
Another way of categorizing Byron tools is by the form of data they operate on.
Many of the wools, including the global cross-referencer, the data dictionary

B.2.1.7

ORIGINAL PAGE 15
OF POOR QUALITY



generator and the generalized document generator, operate on the data
available in the program library. Other tools, such as the pretty printer,
statement profiler and the compile order generator, operate directly on Ada
source code.

In an earlier section of this paper, we pointed out that an environment must
permit user constructed tools. We have seen that the Byron PDL permits the
user to store arbitrary information in the program library. Tools are also
provided which the user may use to extract that information from the program
library, as well as Ada syntactic and semantic information. The first of these
tools is a generalized document generator, which creates documents based on
user written specifications. These specifications are written using an interpreted
language, BDOC, which permits the extraction of information from the
program library and the output of that information in a formated form. The
second tool is the program library access package (PLAP), a set of Ada
subprograms which provide a window into the library. The user can extract
information about his program, as it evolves, without being concerned with the
internal structure of the library. Ada programs can be written which utilize the
PLAP to query the program library and output individually tailored reports.
Using this package, it is possible to construct complex tools such as a hierarchy
chart drawer or a program interconnectivity matrix. These two tools provide
the elementary tools spoken of in 2.2.

Also pinpointed earlier was the need to support reusability. It is not unusual
for a programmer to duplicate the work of an associate simply because no one
knows that the work has been done before. This problem is especially
pronounced in a distributed computing environment. Even if a piece of code is
available which does a similar task, it may be nearly as difficult to modify as to
write from scratch, since the programmer must first understand how the
existing code works. The userman tool provided with Byron can assist in
relieving this problem. The document created by userman is a description of
the purpose and use of package or subprogram, and is intended to be a
document of the design of a package or subprogram following the design
methodology suggested by Liskov [14]. Other documents supporting other
design methodologies could be produced. One can then cnvision a design
library stored on a computer to which programmers could refer when looking
for a package to do a specific job. Another way to encourage reusability would
be to create a user defined keyword "keywords.” This keyword would be
permitted on all library units, and the text following it would be a list of
keywords describing the functionality the unit provides. A simple program
could be written using the Plap which would extract the keyword list from each
anit in the program library. lach element in the list would be compared w a
string which the user ol the program would supply, and if they matched, an
overview of the unit would be printed. This would assist users in sifting
through large librarys of software W find appropriate wols.

ORIQINAL PAZE 18
OF POGR QUALITY B.2.1.8

Y



x Documents of this nature also help support the software life cycle, by helping
to show the design as it currently exists, rather than as it is intended to uxist or
as it used to exist. Byron also offers a tool to support the tracking of
requirements, to ensure that the final result of the project does in fact fulfill the
needs it was intended to. The userman and requirements tracking tools help
Byron to support transitions from one phase to another, as does the fact that

. many of the tools are useful in multiple phases,

4. Project Use of the Byron Programming Environment

A comprehensive development system, such as Byron, is difficult to visualize
at work. An operational view is necessary to appreciate the ability of such a
large number of tools to function together usefully. The following scenario is
presented as a brief illustration of how a hypothetical project might evolve
using this system.

First of all, Byron provides methods and tools to assist management with
organization, planning, tracking and reviewing of this project throughout its
entire life cycle. Since the user is permitted to decide what information is to be
stored in Byron annotations, valuable project information such as names of
implementors and/or designers, project progress information, project statistics
may be easily stored and accessed. Tools for computing the Halstead and

. Mec¢Cabe complexity metrics are included, which assist software manageme.u . in
several ways, including estimating the number of outstanding bugs and the time
needed to complcte pieces of software.

The requirements phase of this project defines the problem to be solved.
defines a system design to solve the problem, and allocates the requirements of
that design to hardware and software. The design requirements traceability tool
provides the facility o relate requirements to design clements and modules.
This is especially useful in laler phases where the impact of change may be
quickly traced.

During specification  and  design  work  shifts  from functionality to
decomposition. Program architecture and data structures may be developed
using Byron PDL. The result of this process will be a set of heavily annotated
Ada specifications, from which the document generator can create design
documents which may be reviewed. The template driven document generator
can produce documents as complicated as MIL standard C5 specifications, as
well as other specialized documents a user might need. Suflicient flexibility is
available to support many different design methodologies, by the carcful
selection of Byron annotalions,

The transition from design to implementation is a smooth one since an Ada
based PDI, was used as the program design language It is a small step from
Ada specifications to subprogram bodies which contain nothing more than a few
lines of comments deseribing what that routine is to do, in fact, a ool could be
. written using the program library access package o automalicly generate simple

ORIGINAL PACE 1S
B2.1.9 OF POOR QUALITY



|

bodies on the basis of annc'ated specifications. As implementation begins in
earnest, the user can take full advantage of the PDL aspects of Ada, and where
Ada is desmed inappropriate, Byron annotations may be defined to fill the gap.
A user defined Byron annotation "TBD" or "to-be-determined” might be used as
a general purpose annotation to mark these comments, and permit their
extraction and inclusion in documents. Two such documents might be a report
on which mcdules are not yet fully implemented and what work needs to be
done on them, or perhaps a design document of a more dctailed nature than
that produced by the userman tool. Coding and debugging are assisted by
frequent reports such as cross-references and compilation listings. When
implementation is complete enough, the Ada compiler will generate objcct code
(also stored in the program library) which may be linked for testing.
Implementation and testing are further assisted by a symbolic debugger and
performance analysis toois.

Once the system hegins to work, it must be carefully tested. Software which
has not been adequately tested cannot be considered reliable. The Byron tools
assist testing in several ways. First, the design requirements tracer shows which
modules implement which requirements, helping L focus wsting efforts.
Second, when a module is designed it's purpose is well understocd, and the test
which should be applied are often more obvious t:au after implementation.
The functionality which a module is intended to provide should be tested, not a
specific implementation. Byron annotations provide a mean< for expressing this
information at whatever point in the life cycle it can best be specified.

Software systems spend the majority of their life cycle in maintenance phase.
The cost in terms of both time and money of repairs and enhancements can be
greatly reduced by the availability of accurate documents which describe a
systern at various levels, from requirements down to detailed design. If an
engineer must read code to understand a system, it may be a consideratle
amount of time before changes can be made to the system. Comments, when
they exist, tend to be vaguc and incomplete. Byron provides a mechanism for
specifying what structures should be commented and what type of information
the comments should include. One major purpose of Byron is to provide a
series of documents which describe the system, providing insight at several
levels of complexity.

5. Conclusion

We have identified a nurber of concerns which programming environments
must address, and seen how Byron addresses them. Of these issues, perhaps
the most important are the full coverage of the life cycle, including transitions
between phases, and llexibility, both with respect to the methodology supported
and the tools available. It is expected that successful environments will support
a wide coverage of the life eycele and permit great flexibility.

Byron provides a great deal of (lexihility, both in what information is to be
stored and what tools can access that information. Although there are limits to

3.2.1.10

ORIGINAL PACE IS
OF POOR QUALITY,




tow this information can be expressed, such as the Ada framework
surrounding the information, these limitations serve lo focus the user's
attention on the purpose of the environment: to assist the creation of Ada
programs. Thus, the environment supports primarily the act of producing
programs, not the act of using that product. This is accomplished by helping
the user organize the information which would otherwise be in some possibly
out of date design document, or as a series of random comments, or perhaps
not at all. The user may *hen use this organization to extract only as much of
the information as is necessary for a specific tool to do its work, or to answer
specific questions concerning the software system.

Acknowledgements

This paper was reviewed and commented on by Michael Gordon, David
Ortmeyer and Haynes Turkle. Their suggestions and support are greatly
appreciated.

References

[1] Dijkstra, E.W. "The Humble Programmer” (Turing Award Lecture).
Communications of the ACM. vol. 15, No. 10 (October 1972) : 859-866.

(2] Ivie, E.L. "The Programmer's Workbench - A Machine for Software
Development.” Communications of the ACM. Vol. 20 No. 10 (October, 1977) :
746-753.

(3] Department of Defence. Requirements for Ada Programming Support
Environments, 'STONEMAN’. {Washington : US Department of Defence,
1980).

[4] Yourdon, E. and Constantien, L.L. Struclured Design. (New York
Yourdon, Inc., 1978) : 3-9.

|5] Henderson, P., ed. Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Pracltical Software Development Environments. New
York: The Association for Computing Machinery, Inc., 1984.

[6] Gutz, S., Wasserman, A.lL, and Spier, M.J. "Personal Development Systems
for the Professional Programmer.” IEFE Computer. Vol. 14 No. 4, (April
1981) : 45-53.

[7] McCracken, D.D., and Jackson, M.A. "Life-Cycle Concept Considered
Harmful.” Software IEngimeering Notes. Vol. 7 No. 2, (April 1882) : 29-32.

(8] Hoffnagle, G.I., and Beregi, W.I. "A .iomating the Software Development

B.2.1.11



Process.” IBM Systems Journal. (vol. 24, No. 2, 1985) : 102-120.

[9] Osterweil, L. "Software Development Environment Research: Directions for
the Next Five Years.” IEEE Computer. Vol. 14 No. 4, (April 1981) : 35-43.

[10] Bergland, G.D. and Gordon, R.D. "Software Development Environments.”
Tutorsal - Software Design Stratagies. 2nd ed. New York : IEEE, 1981 : 347-
353.

[11]) Wasserman, A.I. "Automated Development Environments.” IEEE
Computer. Vol. 14 No. 4, (April 1981) : 7-10.

[12) Larsen, M.J,, Ortmeyer, D.O., Turkle, H.,, and Gordon, M. "The
Byron1100 Program Support Environment.” Proceedings of Use, Inc. Fall
Conference, vol. 1. Anaheim, CA, (November, 1985) : 119-134.

[13] Byron Program Development Language and Document Generator. Cambridge
: Intermetrics Inc., 1985.

[14] Liskov, B. Modular Proyram Construction Using Abstartions. MIT
Computation Structures Group Memo 184. September 1979.

[15] von Henke, F.W., Luckham, D., Krieg-Brueckner, B., and Owe, O.
"Semantic Specification of Ada Packages.” Ada in Use: Proceedings of the Ada
International Conference. Cambridge: Cambridge University Press, 1985 : 185-
1986.

[16] Luckham, D.C., von Henke, F.W., Krieg-Brueckner, B., Owe, O. Anna: A

Language for Annotating Ada Programs. Computer Systems Laboratory
Technical Report 84-261. Stanford University. July, 1984.

B.2.1.12



